Preparation and Photo-Fenton Activity of Nano Perovskite Oxides of CeBa$_{1-x}$Fe$_x$O$_{3-δ}$ (X=0, 0.5, 1) by Sol-Gel Method

A. ANANTHARAMAN 1, A. PAUL RAJ2 AND M. GEORGE1*

1, 1*Department of Chemistry, Stella Maris College, Chennai, Tamilnadu, India
2Department of Physics, Loyola College, Chennai, Tamilnadu, India
Corresponding Author email: maryge@gmail.com

Abstract

Rare-earth nano sized perovskite ferrites are the most considerable class of materials due to their exceptional structural, optical and magnetic properties. CeBa$_{1-x}$Fe$_x$O$_{3-δ}$ nano mixed perovskite oxides with varying mole ratios (x=0, 0.5 and 1) were synthesized via sol-gel method. The synthesized nanomaterials were characterized using FT-IR, PXRD, HR-TEM, UV-Visible and VSM techniques. XRD analysis showed that the CeBa$_{0.5}$Fe$_{0.5}$O$_{3-δ}$ oxides were nanocrystalline with orthorhombic structure. The optical studies reveal that CeBa$_{1-x}$Fe$_x$O$_{3-δ}$ oxides are semiconductors with highest band gap value observed in CeBa$_{0.5}$Fe$_{0.5}$O$_{3-δ}$ than pure oxides. The magnetic analysis from VSM measurements showed that CeBa$_{0.5}$Fe$_{0.5}$O$_{3-δ}$ mixed metal oxide nanoparticles were weakly ferromagnetic and exhibit as a soft ferrite. The photocatalytic activities of CeBa$_{1-x}$Fe$_x$O$_{3-δ}$ nanoparticles were evaluated by the photodegradation of methylene blue UV-Visible light irradiation. The photocatalytic results suggest that the degradation efficiency was 99% for CeBa$_{0.5}$Fe$_{0.5}$O$_{3-δ}$ nano perovskite mixed metal oxide and the reaction followed pseudo-first order kinetics. Oxygen vacancies, substitution of divalent metal cation and the strong absorption in visible light increased the photocatalytic activity of cerium barium ferrite.

Keywords: Nano Perovskite oxide; sol-gel; dye degradation; photo fenton activity

Introduction

Perovskite type mixed metal oxides with the general formula ABO$_3$ in which A is a rare earth or alkali earth ion and B is 3d, 4d or 5d transition metal ion are multifunctional materials. Further, substitution in both A and B sites can change the composition and symmetry of the oxides and create cations or oxygen vacancies, which have a vital influence on the band structures and the photocatalytic behavior of these materials [1]. Magnetic composite systems such as TiO$_2$/iron oxide, anatase TiO$_2$ nanoparticle coating on magnetic particles including barium ferrite, Fe$_3$O$_4$, nickel ferrite are being reported in literature [2]. Due to the non-stoichiometric nature of the cation or anion, the distortion of the cation configuration and the electronic structure arising from mixed-valence perovskite and perovskite-related materials exhibit versatile physical and chemical properties such as colossal magnetoresistance, ferroelectricity, superconductivity, charge ordering, spin dependent transport, high thermo power and the interplay of structural, magnetic and transport properties and intriguing properties [3,4]from both the theoretical and the application point of view have attracted considerable research interest in materials chemistry.

Rare earth ferrites [5] has attracted great attention among researchers due to their useful properties in various promising applications ranging from solid oxide fuel cells[6], dye sensitized solar cells[7], sensors[8], environmental catalysts[9] to magnetic materials[10]. The mixed valence states of Fe$^{2+}$/Fe$^{3+}$ existing between the 3d iron ions in RFeO$_3$ ceramics is due to the anion deficiency, making
them prominent electric and magnetic materials[11]. An electron hopping process occurs in RFeO₃-based perovskites between the Fe³⁺ and Fe²⁺ ions[12]. Among the various oxide-based semiconductor photocatalysts, TiO₂ has received intensive attention due to the advantages of low-cost, high activity, photochemical stability and environmental friendliness. However, TiO₂ can only absorb the ultraviolet (UV) light occupying a small fraction of <6% of the solar energy due to its large band gap which confines its practical applications. Many efforts have been made to study the optical response of TiO₂ under visible-light region including nonmetal (e.g. N, C, F, S) or transition metal doping (e.g. Cr, Cu, Fe), organic dyes sensitizing etc. [13-14]. But, the photocatalytic activity was found to be still low, and there were problems in achieving stability or applicability.

Photocatalysis has quite a lot of promising applications in the environmental field. A wide range of materials systems have been developed over the past two decades as the number of applications based on photocatalysis such as degradation of volatile organic compounds (VOC) for water treatment [15], germicide and antimicrobial action [16], decoloration of industrial dyes [17], nitrogen fixation in agriculture [18], and removal of NOₓ/Soₓ air pollutants[19–20]. These applications have led to the development of variety of materials systems which are appropriate for specific applications. Rare earth and bismuth-based double perovskites with general formula Ba₂RBiO₆ where (R = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy) were prepared and their photocatalytic activity was studied for methylene blue degradation [21]. The band gap value of LaCoO₃ was found to be 2.7 eV and the oxygen-deficient LaCoO₃₋δ has been studied for methyl orange degradation (>400 nm)[22].

The environmental issues associated with organic dyes from textile and dyeing, paper and other industries remain to be the main concern. Therefore, more effort has been devoted in developing heterogeneous nanocatalysts which would serve as a popular material to study the photodegradation of dyes from the environment. Methylene Blue (MB) is one among the dyes used in printing, paper, textile and dyeing, pharmaceutical and food industries [23, 24] with the chemical formula C₁₆H₁₈N₃SCl. The structure of methylene blue dye is given in Figure 1 and the maximum absorption peak recorded in the UV spectrum is 665 nm. Investigation of the structural, optical and magnetic properties and the photocatalytic potential of the CeBa₁₋ₓFeₓO₃₋δ nanoparticles are the main objectives of the present study.

Experimental Work

All the chemicals purchased for the synthesis of cerium barium ferrite nanoparticles were used as such without any further purification. Analytical grade Ce₃O₉.H₂O (SDFCL), barium nitrate (Fischer Scientific), Iron nitrate (Fischer Scientific), C₆H₈O₇.H₂O (Fischer Scientific), ethylene glycol (Fischer Scientific) and deionized water were used as precursors for the synthesis of CeBa₁₋ₓFeₓO₃₋δ (x=0, 0.5 and 1) mixed metal oxides. Methylene Blue (Nice chemicals) and hydrogen peroxide ((Fischer Scientific) was used for dye degradation studies.

![Figure 1: Structure of Methylene Blue dye](image-url)
Nano perovskite oxides CeBa$_{1-x}$Fe$_x$O$_{3-\delta}$ (x=0, 0.5 and 1) with varying mole ratios were synthesized using citric acid sol-gel method. The required precursors containing nitrates in appropriate mole ratios were dissolved in deionized water to form clear homogeneous solution. The mixture containing citric acid and ethylene glycol were heated and stirred at 100°C. Then, the above solution was heated and stirred in a magnetic stirrer at 150°C and kept for gelation at 300°C for 3 h in air oven. The obtained gel was sintered in muffle furnace at 800°C for 8 hours and the resulting powder was used for further characterization studies. The corresponding chemical reactions for the synthesized materials are as follows:

\[
\begin{align*}
\text{Ce(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O} + \text{Ba(NO}_3\text{)}_2 + 3\text{C}_2\text{H}_3\text{O}_7 + \text{C}_6\text{H}_8\text{O}_2 & \xrightarrow{800^\circ\text{C} / 8\text{ hrs}} \text{CeBaO}_3 \\
\text{Ce(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O} + \text{Ba(NO}_3\text{)}_2 + \text{Fe(NO}_3\text{)}_3 + 9\text{H}_2\text{O} + 3\text{C}_2\text{H}_3\text{O}_7 + \text{C}_6\text{H}_8\text{O}_2 & \xrightarrow{800^\circ\text{C} / 8\text{ hrs}} \text{CeBa}_{1-x}\text{Fe}_x\text{O}_{3-\delta} \\
\text{Ce(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O} + \text{Fe(NO}_3\text{)}_3 + 9\text{H}_2\text{O} + 3\text{C}_2\text{H}_3\text{O}_7 + \text{C}_6\text{H}_8\text{O}_2 & \xrightarrow{800^\circ\text{C} / 8\text{ hrs}} \text{CeFeO}_3
\end{align*}
\]

Photo degradation of Methylene Blue using CeBa$_{1-x}$Fe$_x$O$_{3-\delta}$ (x=0, 0.5 and 1) perovskite nano mixed metal oxides

The photo degradation experiment was carried out in 100mL quartz tubes containing 25ppm methylene blue solution and 0.1g of catalyst using a UV multi-lamp photoreactor [Heber HML – COMPACT- LP-MP88]. The photoreactor was fitted with six numbers of 8W mercury vapor lamps (Sankyo denki, Japan) emitting wavelengths with maximum spectral intensity at 365 nm and the reaction chamber was made of highly polished anodized aluminum with built-in cooling fans. The experiment was performed by aerating continuously, which served as the oxygen source for the thorough mixing of the solution. Preliminary reactions were done to monitor the variations in dark and under UV-lamp irradiation with hydrogen peroxide. The degradation studies were performed for 180 minutes. The different aliquots were collected and centrifuged to remove the particles for every 30 minutes and the absorbance was measured with UV-Visible spectrophotometer. The degradation efficiency of the nano photocatalysts was calculated using the following equation:

\[
\% \text{ degradation} = \frac{C_0 - C_t}{C_0} \times 100
\]

(1)

Where C_0 and C_t represent the initial concentration and concentration at time t respectively.

Determination of oxygen non-stoichiometry

The oxygen non-stoichiometry δ of pure and mixed metal oxide was determined by Bunsen-Rupp method. In this method, the samples on digestion with concentrated hydrochloric acid leads to reduction of ceriumions. Thus, the evolved chlorine was studied by iodometric titration [25].

Results and Discussion

Powder X-ray diffraction studies

The XRD patterns of CeBaO$_3$ (CBFO-1), CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ (CBFO-2) and CeFeO$_3$ (CBFO-3) oxides, prepared by sol-gel method and sintered at 800°C for 8h are shown in Figure.2. It can be seen that the diffraction pattern were in good agreement with standard pattern of perovskite oxide. The unit cell
corresponding to the synthesized mixed oxides has undergone distortion from its basic cubic structure. The reason for modification in crystal system from cubic to orthorhombic system may be because of difference in type and extent of distortion of \(\text{Fe}_2\text{O}_3 \) octahedra along the three basic crystallographic axis of the cubic perovskite cell [26]. The average crystallite size of the synthesized particles were calculated using the Debye-Scherrer’s formula:
\[
D = \frac{0.89 \lambda}{\beta \cos \theta}
\]

Where \(D \) is the average crystallite size, \(\lambda \) is the wavelength emitted from X-rays, \(\beta \) is Full Width Half Maximum (FWHM) and \(\theta \) represents the corresponding Bragg’s angle. The average crystallite size of pure CeBaO\(_3\) (CBFO-1) and CeFeO\(_3\) (CBFO-3) oxides were found to be 36nm and 23nm respectively and the mixed metal oxide CeBa\(_{0.5}\)Fe\(_{0.5}\)O\(_{3-\delta}\) (CBFO-2) with 0.5 mole ratio showed 22nm. Therefore, the average crystallite size increases on substitution compared to pure oxides.

![Figure 2](image1.png)

Figure 2. PXRD spectra of CBFO-1, CBFO-2 and CBFO-3 nanoparticles

FT-IR Analysis

FT-IR spectrum helps in determining the appropriate metal-oxide vibrating frequencies and functional groups present in the synthesized materials. Usually, perovskite oxide metal-oxygen frequencies range from 400-1000 cm\(^{-1}\). The pure CeBaO\(_3\) (CBFO-1) and CeFeO\(_3\) (CBFO-3) oxides exhibited absorption frequencies at 858 and 467; 538 and 480 cm\(^{-1}\) respectively. The spectral vibrations at 626 and 534 cm\(^{-1}\) confirmed the presence of characteristic metal-oxygen bond in CeBa\(_{0.5}\)Fe\(_{0.5}\)O\(_{3-\delta}\) (CBFO-2) mixed metal oxide as shown in Figure 3. The peaks around 3400 cm\(^{-1}\) and 1600 cm\(^{-1}\) correspond to...
surface adsorption of water and absorption as a result of the compactions of powder specimen with KBr[27]. This characteristic feature is well-understood in CBFO-2 than in pure mixed metal oxides.

Figure 3 FT-IR spectra of CBFO-1, CBFO-2 and CBFO-3 nanoparticles

Morphological studies

The size, distribution and crystallinity of the synthesized nanoparticles were examined using Transmission Electron Microscope. HRTEM micrographs and SAED patterns of the pure CeBaO$_3$ (CBFO-1) and CeFeO$_3$ (CBFO-3) oxides and CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ (CBFO-2) mixed metal oxide are represented in Figure 4, Figure 5 and Figure 6 respectively. TEM micrographs indicated that the particles were highly agglomerated in pure CeFeO$_3$ (CBFO-3) oxide and CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ (CBFO-2) mixed metal oxide due to magnetic characteristic of ferrites [28]. The particles are having network like morphology. The brighter spots attained from the selected area electron diffraction (SAED) pattern indicates that the synthesized materials are nanocrystalline in nature. The ring like pattern obtained in SAED confirmed the nano dimension scale of the synthesized oxide materials.

Figure 4 TEM and SAED pattern for CBFO-1 nanoparticles
Optical Properties

UV-Vis absorption spectra of pure and mixed metal oxide nanoparticles are shown in Figure 7. The absorption edge for pure CeBaO₃ (CBFO-1) and CeFeO₃ (CBFO-3) oxides were found to be 446 and 558 nm respectively and 474 nm for CeBa₀.₅Fe₀.₅O₃₋δ (CBFO-2) mixed metal oxide illustrating its suitability for visible light photocatalysis. Therefore, it is observed from the graph that the oxide shifts the absorption edge value to a higher wavelength indicating red shift. According to Ref. [26], nano perovskite which are found to have similar crystal structure through X-ray diffraction studies showed very close values of absorption edges.

The absorption coefficient and band-gap energy is given by the relation as follows: (F(E)/E)²=α(E-E₀)[28] in which E, E₀ and α are photon energy, band gap energy and characteristic constant for semiconductors respectively. The band-gap energy was obtained from Kubelka-Munk function verses energy of excited light were 3.22 eV, 3.27 eV and 2.75 eV for CeBaO₃ (CBFO-1), CeBa₀.₅Fe₀.₅O₃₋δ (CBFO-2) and CeFeO₃ (CBFO-3) oxides respectively (Figure 8). Therefore, the results indicated that inclusion of divalent alkaline earth cations aids in further increase in band gap energy compared to pure oxides. Minor differences in the band gap energy values were observed from the
Kubelka-Munk plot between the pure and mixed metal oxide nanoparticles. This observation can be related to small variations in crystallite size and created oxygen vacancies in the electronic band structures. The highest value of band gap was observed for CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ (CBFO-2) mixed metal oxide due to the increased amount of Fe$^{2+}$ as compared to pure CeFeO$_3$(CBFO-3) oxide. Factors such as crystallite size, presence of impurities and structural parameters influence the band gap energy.

![Kubelka-Munk plots of CBFO-1, CBFO-2 and CBFO-3 nanoparticles](image1)

Figure.8. Kubelka-Munk plots of CBFO-1, CBFO-2 and CBFO-3 nanoparticles
Magnetic properties

The magnetic properties of CeBaO₃ (CBFO-1), CeBa₀.₅Fe₀.₅O₃₋δ (CBFO-2) and CeFeO₃ (CBFO-3) nanomaterials sintered at 800°C were investigated as shown in Figure 9. When an external magnetic field is applied at room temperature, spontaneous magnetization and hysteresis loops for the synthesized nanomaterials were observed. Formation of magnetic hysteresis loop occurs when a magnetization curve of a ferromagnetic or ferrimagnetic material follows a different demagnetization path. Therefore, the appearance of narrow hysteresis loops indicates weak ferromagnetism[29]. The hysteresis loops of mixed metal oxide CeBa₀.₅Fe₀.₅O₃₋δ (CBFO-2) nanoparticles exhibited weak ferromagnetic behaviour whereas the hysteresis loops of pure CeBaO₃ (CBFO-1) and CeFeO₃ (CBFO-3) oxides showed ferromagnetic behaviour at room temperature. The magnetic parameters such as saturation magnetization Mₛ, coercivity H_c, retentivity M_r and squareness ratio are represented in Table 1.

From the VSM graph and values listed in Table 1, it is clear that coercivity of pure CeFeO₃ (CBFO-3) oxide is very high as compared to CeBa₀.₅Fe₀.₅O₃₋δ (CBFO-2) mixed metal oxide, which is a typical behavior of hard ferrites. Therefore it can be concluded that CeBa₀.₅Fe₀.₅O₃₋δ (CBFO-2) mixed metal oxide is a soft ferrite while CeFeO₃ (CBFO-3) comes under the group of hard ferrites. The squareness value of the hysteresis loops were calculated by the ratio of retentivity and magnetization and it was found to be 0.3208 (e.m.u/g), 0.1278 (e.m.u/g), and 0.4223 (e.m.u/g) for CBFO-1, CBFO-2 and CBFO-3 nanoparticles respectively. The magnetic moment is calculated by using the following relation [30]:

$$\mu_{(B)} = \frac{M \times M_s}{5855}$$

(3)

Where M is the molar mass and Mₙ is the saturation magnetization. The magnetic moment was found to be 0.011; 0.007 for pure oxides (CeBaO₃ and CeFeO₃) and 0.025 for mixed metal oxide (CeBa₀.₅Fe₀.₅O₃₋δ).

<table>
<thead>
<tr>
<th>S.No</th>
<th>Sample Code</th>
<th>Coercivity (H_c) (G)</th>
<th>Retentivity (M_r) (e.m.u)</th>
<th>Magnetization (M_s) (e.m.u)</th>
<th>Squareness ratio (e.m.u/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CeBaO₃</td>
<td>368</td>
<td>25.92E-6</td>
<td>80.79E-6</td>
<td>0.3208</td>
</tr>
<tr>
<td>2.</td>
<td>CeBa₀.₅Fe₀.₅O₃₋δ</td>
<td>961</td>
<td>1.07E-3</td>
<td>8.37 E-3</td>
<td>0.1278</td>
</tr>
<tr>
<td>3.</td>
<td>CeFeO₃</td>
<td>3645</td>
<td>1.66 E-3</td>
<td>3.93 E-3</td>
<td>0.4223</td>
</tr>
</tbody>
</table>

Investigation of Photocatalytic activity of CeBa₁₋ₓFexO₃₋δ (where x= 0, 0.5, and 1) perovskite oxides

Photo-Fenton activity determines the rate of decolourization of methylene blue dye solution in the presence of catalyst under UV-lamp irradiation. The major absorption band of methylene blue dye at 664 nm in the visible region appeared due to conjugation between two dimethylamine substituted rings through N and S.

The photocatalytic experiments were carried out by addition of 100mg CeBaO₃₋δ(CBFO-1), CeBa₀.₅Fe₀.₅O₃₋δ(CBFO-2) and CeFeO₃ (CBFO-3) catalysts to 25ppm of 100mL methylene blue dye solution in quartz tubes. Before illumination, the adsorption-desorption equilibrium between the photocatalysts and methylene blue dye solution was studied by stirring in dark for about 30 minutes. During the dark reaction, 5.06% decolourization was observed for CeBa₀.₅Fe₀.₅O₃₋δ(CBFO-2) mixed metal oxide nanoparticles whereas 0.67% and 1.35% decolourisation was observed for CeBaO₃(CBFO-1) and CeFeO₃ (CBFO-3) pure oxides. No reactivity in methylene blue dye solution was observed both in
presence and absence of UV-lamp irradiation. No significant degradation with time was observed in the presence of dye and photocatalysts without the addition of hydrogen peroxide.

Figure 9. VSM of CBFO-1, CBFO-2 and CBFO-3 nanoparticles

Figure 10. Absorption spectra in the presence of CBFO-1, CBFO-2 and CBFO-3 nanoparticles as photocatalysts
Therefore, preliminary results concluded that presence of oxygen, catalyts and UV-lamp irradiation was required for dye decolorisation studies. The degradation of methylene blue dye under visible-light illumination was known as an effective method to evaluate photocatalytic activity of the orthoferrite nanoparticles. It is clearly understood from the graph that with increasing reaction time, reduction in absorption bands of the methylene blue dye was observed. Figure 10 shows the reduction in absorption spectra with time for CBFO-1, CBFO-2 and CBFO-3 nanoparticles respectively. Higher decolourisation efficiency of 99.28% was achieved for CeBa0.5Fe0.5O1.4(CBFO-2) nanoparticles when compared to pure oxides. The strong absorption bands in the visible-light region [25] are due to the higher oxygen vacancies CeBa0.2Fe0.5O1.6 mixed metal oxide (δ=1.12) (Figure.11) as compared to CeBaO3 and CeFeO3 pure oxides.

Based on the above results obtained, the possible mechanism proposed for photodegradation of Methylene Blue dye (MB) on CeBa1-xFe1.0xO1.0x(x=0, 0.5 and 1) nano perovskite oxide is as follows [28]:

\[
\begin{align*}
\text{CeBa}_{1-x}\text{Fe}_x\text{O}_{1.4x} & \xrightarrow{\text{h}^+} \text{CeBa}_{1-x}\text{Fe}_x\text{O}_{1.4x}[\text{h}^+ (\text{VB}) + e^-(\text{CB})] \\
\text{Fe}^{3+} + \text{H}_2\text{O}_2 & \xrightarrow{\text{Fe}^{2+} + \cdot \text{OOH} + \text{H}^+} \\
\text{Fe}^{3+} + \cdot \text{OOH} + \text{H}^+ & \xrightarrow{\text{Fe}^{2+} + \text{O}_2 + 2\text{H}^+} \\
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \xrightarrow{\text{Fe}^{3+} + \text{OH}^+ + \cdot \text{OH}} \\
\text{MB} + \text{h}^+ & \xrightarrow{\text{MB}^+} \\
\text{MB}^+ + \text{CeBa}_{1-x}\text{Fe}_x\text{O}_{1.4x}(\text{VB}) & \xrightarrow{\text{CeBa}_{1-x}\text{Fe}_x\text{O}_{1.4x}^+\text{MB}^+} \\
\text{MB} (\text{or MB}^+) + \cdot \text{OH} & \xrightarrow{\text{Degraded products}}
\end{align*}
\]

Therefore, for mixed metal oxide /hydrogen peroxide system, the simultaneous presence of CeBa0.2Fe0.5O1.6-nanoparticles and H2O2 markedly enhanced the Photodecolourization of methylene blue dye, which implies that CeBa0.2Fe0.5O1.6 nanoparticles acts as an efficient heterogeneous fenton-like catalyst compared to pure oxides.

![Figure 11. Oxygen non-stoichiometry (δ) versus Catalysts in study](image)

Chemical kinetic studies of synthesized photocatalysts

According to Langmuir Hinshelwood (L-H) model[31, 32] the photocatalytic degradation of methylene blue dye in the presence of CeBa1-xFe1.0xO1.0x (x= 0, 0.5 and 1) followed pseudo first order kinetics.

\[
r = -\frac{dc}{dt} = \frac{k_1KC}{1 + K_{EC}C} = kC \quad (11)
\]
where \(r \) is rate of reaction in \(\text{mgL}^{-1}\text{min}^{-1} \), \(k_r \) is reaction rate constant in \(\text{mgL}^{-1}\text{min}^{-1} \), \(K_{\text{ad}} \) is the adsorption rate constant in \(\text{Lmg}^{-1} \), \(C \) is concentration of the reactant in \(\text{mgL}^{-1} \), \(t \) is the time of irradiation in min and \(k \), pseudo first order rate constant in \(\text{min}^{-1} \).

By integrating in limit of \(C=C_0 \) at \(t=0 \), the above equation can be expressed as

\[
\ln \frac{C_0}{C} = kt
\]

(12)

The linear plot of \(-\ln \frac{C}{C_0} \) Vs time for all the catalysts CBFO-1, CBFO-2 and CBFO-3 are shown in Fig.12.

![Figure 12: Photo-degradation kinetics of CBFO-1, CBFO-2 and CBFO-3 nanoparticles](image)

Figure 12 Photo-degradation kinetics of CBFO-1, CBFO-2 and CBFO-3 nanoparticles

Degradation efficiency of the synthesized photocatalysts

The catalytic activity of CeBa\(_{0.5}\)Fe\(_{0.5}\)O\(_{3-δ}\) (CBFO-2) mixed metal oxide nanoparticles was much higher than those of pure oxides (CeBaO\(_3\) and CeFeO\(_3\)) as represented in Figure.13. The higher efficiency of CeBa\(_{0.5}\)Fe\(_{0.5}\)O\(_{3-δ}\) mixed metal oxide may be due to higher oxygen vacancies as compared to pure oxides. The magnetic and visible-light property of CeFeO\(_3\) pure oxide also makes it act as a photocatalyst.

![Figure 13: Degradation efficiency of CBFO-1, CBFO-2 and CBFO-3 photocatalysts](image)
Conclusion

In summary, CeBa$_{1-x}$Fe$_x$O$_{3-\delta}$ nano perovskites with varying mole ratios (X=0, 0.5 and 1), prepared via citric acid sol-gel process was characterized and studied for degradation of methylene blue dye under UV and visible light irradiation. The average crystallite size obtained from XRD ranges between 22-36nm which revealed the synthesized materials are nanocrystalline in nature. The IR bands at 626 and 534 cm$^{-1}$ confirmed the presence of characteristic metal-oxygen bond in CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ mixed metal oxide. The band-gap energy values of 3.22 eV, 3.27 eV and 2.75 eV obtained from Kubelka-Munk plots for CeBaO$_3$ (CBF-1), CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ (CBF-2) and CeFeO$_3$ (CBF-3) oxides indicated that the presence of divalent alkaline earth cations aids in further increase in band gap energy compared to pure oxides. The magnetic measurements obtained from VSM analysis showed that CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ mixed metal oxide nanoparticles were weakly ferromagnetic as compared to pure oxides which were ferromagnetic. Among the synthesized catalysts, it was notable that nano perovskite CeBa$_{0.5}$Fe$_{0.5}$O$_{3-\delta}$ (CBF-2) mixed metal oxide nanoparticles could degrade the methylene blue azo dye and act as photo-fenton like photocatalyst more efficiently when compared to other similarly existing pure oxide photocatalysts.

References

[1] Kanta, Dheeraj Kumar, Study the perovskite-type mixed metal oxides with the general formula ABO$_3$, IJRST, 3, 1-5, 2014.
[2] W Zi-Xian, W Yan, L Ji-Ping, X Cai-Mei, Z Wei-Wei, Synthesis, magnetization and photocatalytic activity of LaFeO$_3$ and LaFe$_{0.5}$Mn$_{0.5-x}$O$_{3-\delta}$, Mater. Chem. Phys., 136, 755-761, 2012.

