

Effect of various types of Dyes and N-doping in supporting performance of TiO₂ based Dye Sensitized Solar Cells

Shivam Yadav¹, Vinita Dhulia¹

¹N.E.S Ratnam College of Arts Science and Commerce, Mumbai, Maharashtra, India. *Corresponding Author E-Mail: shivam.yadav@ratnamcollege.edu.in

Abstract

Dye Sensitised Solar Cell (DSSC) have piqued both practical and theoretical attention since they emerged as low-cost alternative to conventional silicon based solar cell [1][2]. TiO₂ nanoparticles are abundant, stable, and nontoxic and they are widely employed for a variety of applications [3]. The band gap of TiO₂ is determined to be about 3.2 eV for the anatase phase, which restricts the visible light absorption. Here we have analysed the absorption spectra for the pure TiO₂ and compared it with that of N-doped TiO₂ using a UV-visible spectrophotometer. Absorption spectra were also observed for composites of TiO₂ made by varying the concentration of Nitrogen [7]. Synthesis of TiO₂ and N-doped TiO₂ was done using Sol-gel method [4][5][6]. Particle size for TiO₂ was confirmed using X-Ray Diffraction.

It was observed that Nitrogen doping reduces the band gap leading to increase in the absorption of light in visible range. Further studies were carried out by adding four different Azo dyes as a sensitizer for N-doped TiO₂. I-V Characterizations of the samples was examined to determine their effectiveness. The best result was found with Methylene Blue.

Keywords: Dye Sensitised Solar Cell (DSSC), Azo Dye, TiO₂ Nano-particles, Ndoped TiO₂, Energy band gap.

Introduction:

O'Regan and Grätzel reported that the Dye-Synthesized Solar Cell (DSSC) is a promising alternative to silicon and multi-junction solar cells [8]. DSSC is a device that converts photons into electrons [1][9]. The Dye used as a photosensitizer has a significant impact on the DSSC's performance [10]. This is because it absorbs lighter than TiO_2 alone and converts photons to electrons, resulting in a higher photon to electron conversion efficiency [7].

The advantages of Azo dyes include their availability and low cost. For a dye to efficiently convert light to electricity in DSSC, the Lowest Unoccupied Molecular Orbital (LUMO) must have a more negative potential than TiO_2 's conduction band edge, allowing the injection process to be thermodynamically favorable. Furthermore, the dye must be in a good electrical and chemical contact with TiO_2 for electron injection to be efficient. The Highest Occupied Molecular Orbital (HOMO) of the dye must be more positive. Finally, the band gap of the dye must be as small as possible [2][11][12].

Experimental:

Synthesis of TiO₂ and Nitrogen doped TiO₂ Nanoparticles by Sol-Gel method

By using the Sol-Gel method, we have prepared samples of TiO₂ nanoparticles, pure TiO₂ and Nitrogen doped TiO₂[4][6][13]. Four different Azo dyes were obtained from Loba Chemicals: Methyl Orange, Methylene Blue, Eriochrome Black T and Alizarin Red. Titanium butoxide ($C_{16}H_{36}O_4Ti$) precursor used for TiO₂ nanoparticles synthesis, Ethanol (C_2H_5OH), De-ionized water, and Nitric acid (HNO₃) are taken in the ratio 1/20/0.5/0.1 respectively [13]. It was maintained at 450°C for annealing. N-doped TiO₂ is obtained using TiO₂ nanoparticles and Tri-ethylamine (Nitrogen source) taken in equal ratios. Composites were also prepared with TiO₂ and 4 different Azo dyes taken in a ratio of 1:1 and also N-doped TiO₂ with Azo dyes taken in a ratio of 1:1.

Characterization of the Composites

Size of the TiO₂ Nanoparticles using XRD

X-Ray Powder Diffraction (XRD) patterns for the pure TiO_2 sample were collected and the crystal size of samples was calculated from peak broadening by the Scherrer equation.

Absorption Spectra of the composites

The absorption Spectra was studied using UV visible spectrophotometer first with pure TiO_2 and N-doped TiO_2 , composites of TiO_2 with all four dyes taken in the ratio of 1:1, composites of N-Doped TiO_2 with all four dyes taken in ratio 1:1.

Result and Discussion:

X-Ray Diffraction (XRD)

Fig. 1: XRD of Pure TiO₂

Figure 1 shows the X-Ray Diffraction pattern of Pure TiO_2 . Diffraction peaks of Pure TiO_2 were obtained at 25.320, 37.870, 48.0560, 53.910, 55.080, 62.70, 68.760, 70.310, and 75.120. These can be

Effect of various types of Dyes and N-doping in supporting	Shivam Yadav ¹ , Vinita Dhulia ¹	- 21 -
performance of TiO ₂ based Dye Sensitized Solar Cells		I
		I

assigned to crystal planes (101), (004), (200), (105), (211), (204), (116), (220) and (215) that correspond to the anatase phase of titania and agree with JCPDS card np.21-1272.

The average crystalline particle size is calculated by applying Sherer expressions in equation (1)

$$D = \frac{0.9\,\lambda}{\beta.\,COS\theta} - - - -(1)$$

Sample	20	FWHM	Average particle
		(Full Width Half size(nm)	
		Maxima)	
Pure TiO ₂	25.302	0.6177	13

 Table 1: The average particle size of the sample

The λ is X-Ray wavelength of 1.5406 Å of Cu k α radiation. β is the line broadening at maximum intensity (FWHM) and θ is the Bragg angle. The particle size is recorded in the table.

UV-Visible Spectroscopy

The Optical measurement was made using UV-VIS Spectrophotometer for the dyes and the composites of dyes with Pure TiO_2 and N-doped TiO_2 for the mixing ratio (1:1). The absorption Spectra showed the presence of distinct absorption peaks in the visible region for each type of dye.

Image1: Azo Dyes At 1000 PPM

Image2: Dyes with Pure TiO₂

Image3: Dyes with N-Doped TiO₂

Fig.2: Absorption Specta of all the 4 dyes Fig.3: Absorption

Fig.3: Absorption Spectra of Pure TiO₂ with all 4 dyes (1:1 Ratio)

Fig.4: Absorption Spectra of N-doped TiO₂ with all 4 dyes (1:1 Ratio)

It is evident from the characterization that as nitrogen is introduced, the absorbance edge shifts, resulting in a smaller band gap. As a result, the N-doped TiO_2 sample had a greater absorption of visible light. Similarly, narrowing the band gap of TiO_2 leads to less charge recombination as compared to pure TiO_2 . Using the Kubelka-Munk formula[14] from equation (2), UV-Visible Spectra are transformed into Tauc plots to determine the band gap of the doped sample.

$$\alpha hv = A(hv - E_g)^2 - - - -(2)$$

where α is absorbance coefficient, h is the Plank's constant (4.136*10⁻¹⁵eV), A is constant (1), ν is frequency and E_g is band gap.

Band Gap

Fig. 6: Band-Gap of Pure and N-doped TiO₂

Fig.7: Bandgap of Pure TiO₂ with all 4 Dyes

Fig.8: Bandgap	o of 8% N	-doped TiO ₂	with all 4	Dyes
----------------	-----------	-------------------------	------------	------

Sample	Band Gap (eV)
Pure TiO ₂	3.05
6% doped TiO ₂	2.92
8% doped TiO ₂	2.73
8% doped TiO ₂ with Methylene Blue	1.63

Table 2: Bandgap energy for all samples

- 24 -

Figure 6 shows the narrowing of the band-gap for N-doped TiO_2 . Figure 7 and 8 show that TiO_2 with all the four dyes has enhanced absorption in visible region and narrowed band-gap maximum absorption was observed for Methylene Blue.

Conclusion:

By examining the optical characteristics, it is observed that composites of dye with pure TiO_2 and N-doped TiO_2 enhance the performance of DSSC. Doping of TiO_2 with Nitrogen lowered its band gap. The composite of N-doped TiO_2 with Methylene Blue was found to have maximum absorption.

Conflict of Interest:

The authors declared that they have no conflict of interest.

Acknowledgement

We are thankful to N.E.S. Ratnam College for providing laboratory facilities, we would also like to thank department of Chemistry for providing the essential chemicals, Sophisticated Analytical Instrument Facility (SAIF) IIT Bombay for providing UV-Vis Spectrometer data and Dr. Nainesh Patel for providing XRD data.

References:

- Ahmad, Muhammad Shakeel, Adarsh Kumar Pandey, and Nasrudin Abd Rahim. "Advancements in the development of TiO₂ photoanodes and its fabrication methods for Dye Sensitized Solar Cell (DSSC) applications. A review." *Renewable and Sustainable Energy Reviews* 77 :89-108. (2017)
- [2] Reghunath, Shalini, Dephan Pinheiro, and Sunaja Devi KR. "A review of hierarchical nanostructures of TiO₂: Advances and applications." *Applied Surface Science Advances* 3 :100063. (2021)
- [3] Dahl, Michael, Yiding Liu, and Yadong Yin. "Composite Titanium dioxide nanomaterials." *Chemical reviews* 114.19 :9853-9889. (2014)
- [4] Bessekhouad, Y., D. Robert, and J. V. Weber. "Preparation of TiO₂ nanoparticles by Sol-Gel route." *International journal of photoenergy* 5.3: 153-158. (2003)
- [5] Sharma, Ajay, R. K. Karn, and S. K. Pandiyan. "Synthesis of TiO₂ nanoparticles by sol gel method and their characterization." *J Basic Appl Eng Res* 1.9: 1-5. (2014)
- [6] Sathish, M., et al. "Synthesis, characterization, electronic structure, and photocatalytic activity of Nitrogen-doped TiO₂ nanocatalyst." *Chemistry of materials* 17.25: 6349-6353. (2005)
- [7] Cong, Ye, et al. "Synthesis and characterization of Nitrogen-doped TiO₂ nanophotocatalyst with high visible light activity." *The Journal of Physical Chemistry C* 111.19: 6976-6982. (2007)
- [8] O'regan, Brian, and Michael Grätzel. "A low-cost, high-efficiency solar cell based on dyesensitized colloidal TiO₂ films." *nature* 353.6346 (1991): 737-740.
- [9] Suhaimi, Suriati, et al. "Materials for enhanced dye-sensitized solar cell performance: Electrochemical application." *Int. J. Electrochem. Sci* 10.4 (2015): 2859-2871.
- [10]Ludin, Norasikin A., et al. "Review on the development of natural dye photosensitizer for dyesensitized solar cells." *Renewable and Sustainable Energy Reviews* 31 (2014): 386-396.
- [11]Shalini, Status, et al. "Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review." *International journal of energy research* 40.10 (2016): 1303-1320.

Effect of various types of Dyes and N-doping in supporting performance of TiO_2 based Dye Sensitized Solar Cells

- [12]Shalini, Status, et al. "Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review." International journal of energy research 40.10 (2016): 1303-1320.
- [13]Fernandes, R., et al. "Low energy ion-beam modification of TiO₂ photocatalyst thin film for visible light absorption." Surface and Coatings Technology 203.17-18 (2009): 2579-2583.
- [14]Yang, Li, and Björn Kruse. "Revised Kubelka-Munk theory. I. Theory and application." JOSA A 21.10 (2004): 1933-1941.